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1. Phys.: Condens. Matter 6 (1994) 2603-2618. Printed in the UK 

A calculation of the temperature-dependent susceptibility 
of Pd and dilute Pdl,Ag, and PdH, alloys 

B Kirchner, W Weber and J Voitl%nder 
lnstibt fiir Physikalische Chemie, Universit?il Miinchen, Sophiensmse 11, 80333 Miinchen, 

Received 2 November 1993, in final form 14 December 1993 

Abstract. The temperature dependence of the magnetic pmperries of itinerant elecmn systems 
is mainly due to the excitation of spin fluctuations. We calculate the susceptibilities of Pd, 
Pdl-iAg,. and PdH, (O$x$O.O3)  with an extension of the classical Mumta-Doniach model 
for spin 0uctuations, which treats the energy hu~ctional without a Landau expansion of the 
magnetization-dependent ground state energy. To obmin this energy ASW (augmented spherical 
wave) and KKR-CPA bandstmcture calculations are performed. In agreement with experiment 
the KKR-CPA method yields a maximum of x ( T )  for Pd. which disappws with increasing Ag 
concentration. In the MW calculations, low Ag and H coneemations are simnlated by the 
supereelk Pdw Ag and Pd32H. In addition the alloy PdH, is simulated by calculations for pure 
Pd, with the valence elecmn concentration increased suibbly. 

Calculations of the susceptibility of Pd within the framework of the Stoner theory and 
the spin Eucluation theory based upon the ridd-band model are presented. The role of the 
elemon interaction in both theories is examined and the reason for the maximum of x ( T )  for 
Pd is investigated, We find the different scaling of the temperature axis in the Stoner and spin 
fluchlation theories to have its origin in a different treatment of the electron interaction. 

1. Introduction 

The temperaturedependent susceptibility of Pd and Pd-rich intermetallic compounds has 
been measured by several authors [ l ,  2, 3, 41 since the 1960s. It is a remarkable fact that 
the magnetic susceptibility of pure Pd shows a maximum at about 80 K. Early theoretical 
investigations within the frame of the Stoner theory by Shimizu ef al [5 ]  and Hahn and 
Treutmann [3] related this effect to a positive curvature of the density of states of Pd at the 
Fermi level. Theoretical improvements were made by Liu et al [a] who treated the electron 
exchange-correlation interaction self-consistently at finite temperature within the variational 
approach of Vosko and Perdew [7]. Jrkhin and Rosenfeld [SI assumed a discontinuity of 
the derivative of the density of states near the Fermi level from which they could explain 
the temperature-dependent susceptibility of Pd on the basis of Stoner’s theory. 

Nevertheless, extensive investigations on weak itinerant ferromagnets and nearly 
ferromagnetic metals revealed spin fluctuations to be the most important excitations in the 
low-temperature regime; these are totally neglected in Stoner’s theory. Thus, the discussion 
of thermal properties of these materials should be in terms of spin fluctuation theory. Mohn 
and Schwarz [9] performed spin polarized bandstructure calculations for Pd, to obtain the 
total energy for a set of magnetizations. A Ginzburg-Landau polynomial fit of these data was 
taken as input for the Murata-Doniach model 1101 for spin fluctuations. The susceptibility 
curve obtained in this way also exhibits a maximum. 
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In a recent paper [ 111 we introduced a new method for the calculation of the temperature 
dependent spin susceptibility of weakly correlated itinerant metals. We generalized the 
classical treatment of magnetization fluctuations lirst proposed by Murata and Doniach. 
Our generalization went beyond the Ginzburg-Landau expansion of the energy functional. 
In this paper we present results for the temperaturedependent susceptibility of Pd and of 
the alloys Pdl-,Ag, and PdHZ in the concentration range 0 < x 4 0.03. The required 
handstructure calculations were carried out self-consistently employing the ASW [12] and 
KKR-CFA [13, 141 methods. 

Finally, we apply Stoner's theory to compare the susceptibility curves based upon single- 
particle excitations with those obtained in the framework of spin fluctuation theory. 
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FIgure 1. The measured susceptibility of Pdl-,Ag, 
versus tempmure [Ig. temperature [41. 

Figure 2. The measured susceptibili(y of PdHx versus 

The experimental results for the susceptibility of the Pdl-,Ag, and PdHx alloys are 
shown in figures 1 and 2, respectively. In silver alloys the absolute values of the 
susceptibility decrease and the maximum vanishes at about 3% Ag. In the PdH, alloys 
a similar decrease of the susceptibility with growing hydrogen concentration was observed 
by Jamieson and Manchester [4], yet the whole curve is scaled to smaller values while its 
shape remains unchanged for concentrations below 40% H. The authors ascribed this effect 
to the coexistence of two hydrogen phases in the Pd host, where the cy-phase exists alone 
for H concentrations below 3%. 

The susceptibility maximum of Pd and its dependence on the concentration of impurities 
provides a critical test for our method. 
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2. Outline of the theory 

In former papers [16, 91 the energy functional was written in the form of a Landau 
polynomial 

where the coeficients A, B and C were determined by a fit of the magnetization-dependent 
energy curve obtained by spin polarized bandstructure calculations. As already mentioned in 
[ 111 these coefficients depend strongly on the magnetization range of the fit. Altematively 
the same coefficients may be obtained by fitting a polynomial to the curve B ( M )  = E'(M), 
where E is the external field that stabilizes the magnetization M. Since changes in M 
produce insignificant changes in E with bad consequences on the numerical accuracy, 
it is favourable to use the B(Mf curve, which may also directly be extracted from a 
bandstructure program. Nevertheless, in both procedures the results for the coefficients 
of the fit are strongly affected by the M-range of the fit. To demonstrate this we carried out 
spin polarized ASW bandstructure calculations for Pd to obtain the E ( M )  and B ( M )  curves. 
A least-squares fit of these curves of orders six and five in the range M E [0, M-1 was 
used to calculate the coefficients A, B and C introduced above. Figures 3 and 4 show the 
coefficients versus Mm for both methods. The strong dependence on M,, is remarkable. 

Figure 3. Coefficients A, B and C (in Rydxp;" with 
n = 2.4.6) of the E(M) curve of Pd as a function 
of the upper boundary of the fit. The bandsmctm 
calculations were carried out with the mw method. 
Lattice parameter 7.4 au. 

FigUre4. Correspondingcoefficients for B(M) (allelse 
in figure 3). 
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With our new method, which does not fit a polynomial to the E(M) or B(M) data, we 
could derive the following formula for the temperature-dependent inverse susceptibility: 

Here the mean square of the fluctuations is given by 

where x ( q )  is the wavevector-dependent susceptibility for T = 0. Equations (1) and (2) 
implicitly determine the form of x ( T ) .  The cut-off wavevector qc sets a l i t  for the number 
of classical fluctuation modes contributing to the free energy of the system. A temperature 
dependence of the cut-off wavevector like qc - T'B has already been proposed by Murata 
[17] and Lonzarich and Taillefer [IS]. In [19] we presented a microscopic foundation of 
the Murata-Doniach model and its energy functional. We derived an explicit formula for 
4 0 )  

qc = q o ~ I f 3 .  (3) 
qo was estimated as 

with VmOl being the volume per mole, and y the coefficient of the molar electronic heat 
capacity. 

Equations (2) and (3) lead to a quadratic increase of (mZ) with T at low temperatures, 
and to a linear increase at higher temperatures (see figure 5). Since the term 

E"(M) 2E'(M) -+- 3 3M 
in (1) is the mean of longitudinal and transverse inverse susceptibility, and 

is the Maxwellian distribution function with the maximum at M = m, equation 
(1) represents an average of the inverse susceptibility over spatial components and 
magnetization. As can be seen from figure 5 the (m2)-value corresponding to T = 100 K 
is 10-3/1~2. Thus, for temperatures below 100 K, the Maxwellian has a very sharp peak 
at M-values below 0 . 0 5 ~ ~  and the investigation of the susceptibility in the range 0-100 K 
requires a very accurate calculation of the integrand in this low44 regime. 

When x is calculated for an arbitrm temperature in terms of a h d a u  expansion, the 
B'(M) curve as a whole enters the theory through the expansion coefficients, whereas our 
new method just makes use of that part of B'(M) met by the fluctuations. 

3. Asw results 

We have calculated the electronic structure of the PCC Pd host using the fixed spin moment 
method (FSM) [ZO] for a set of 51 M-values in the range of 0-0.56~~ with an increment 
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/ 

Figure S. The dependence of (m2) on T for an ASW calculation of the susceptibility of Pd; 
lattice parameter 7.425 au. 

of 0 . 0 0 5 ~ ~  for small M-values. From the difference of the Fermi energies for spin up and 
spin down we obtain the magnetic field corresponding to each M-value as 

t . l  
€F -€F 

2fiB 
B ( M )  = -. 

We fit a cubic spline to these data points and perform the differentiation of B and the 
subsequent integration in equation (I)  analytically. We then evaluate equation (1) only for 
such values of (mZ) for which the error due to finite integration is smaller than one per 
cent. This sets an upper boundary for the temperatures with reliable results for x. In order 
to evaluate (2). data for the wavevector-dependent susceptibility at 0 K were taken from 
ab initio calculations on Pd performed by Stenzel and Winter [21], and were fitted to the 
parametrization 

x- ' (q)  = x-l(O)(l +u*q*).  

The integration in (2) can then be performed analytically. 40 was chosen to achieve the best 
possible correspondence between theoretical and experimental curves at high temperatures. 
This procedure of fixing 40 was applied to all susceptibility curves throughout this paper. 
The values for qo found in this way are close to that estimated from equation (4). A 
numerical inversion of equation (2) yielded T ( ( m 2 ) ) .  

The curves for the lattice parameters 7.333, 7.4 and 7.425 au shown in figure 6 were 
obtained from a non-relativistic calculation with 770 k-vectors in the irreducible wedge of 
the first Brillouin zone. For all three curves the susceptibility maximum is reproduced. 
The experimental curve for pure Pd in this and all following figures was generated from 
data of Jamieson and Manchester [4] (below 300 K) and Weiss and Kohlhaas [2] (300-800 
K). The best agreement with experiment is achieved with the equilibrium lattice parmeter 
a = 7.425 au, whereas the experimental lattice parameter 7.333 au corresponds to the lowest 
curve. 

Calculations with a scalar relativistic version of the ASW program at best yielded a poor 
maximum at too low temperature. 
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Figure 6. The susceptibiliry of Pd based on non-relativistic ASW calculations for lattice 
p-etcn 7333, 1.4 and 7,425 au. The corresponding values of q~ are 0.06, 0.056 and 
0.05xZrra-' K-Ip.  

To simulate the susceptibility of the alloy systems Pdl-,Ag, and PdH, in the low 
concentration regime, Asw calculations for Pd3tAg and Pd32H supercells of simple cubic 
structure were performed. 

The hydrogen in PdH fills octahedral interstices while PdAg is a substitutional alloy. 
The different shells of the palladium atoms for both supercells and the corresponding number 
of symmetry-equivalent atoms of the basis are given in table 1. To keep the amount of 
computer time within reasonable limits, we had to restrict the number of k-vectors in the 
irreducible wedge to U) during integration over the Brillouin zone. The geometry of the 
supercell Pd31Ag and the atoms of the basis are sketched in figure 7. 

lsble 1. ?he numbers of equivalent atoms in different shells of lhe Pdpl Ag and Pd32H supercells. 

Equivalent atoms 

Shell PdslAg PdnH 

1 12 6 
2 3 8 
3 12 12 
4 3 6 
5 1 - 

In order to compare our results from these supercell calculations with those for pure Pd 
we had to choose the same k-vectors for the Brillouh zone integration. We therefore used a 
P Q  supercell with 120 k-points, which matches the k-mesh of the Pd32 cell. Figure 8 shows 
the susceptibility curve for Pd3lAg and the corresponding PQ curve. The susceptibilities 
are too high in both cases. The PQ curve is located above the Pd31Ag curve and exhibits 
a very pronounced maximum, which is considerably reduced for the supercell result. This 
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Figure 7. The supercell PdslAg. Ihe black ball represents the Ag atom. The numbers on the 
Pd atoms (hatched balls) indicate the shell to which they belong. 

behaviour correlates with experiment. 
Analogous results for the Pd32H system are collected in figure 9. The susceptibility of the 

theoretical curves is again too high compared with experiment, but the susceptibility curve 
for Pd32H is located correctly below the corresponding P& curve. Finally the maximum of 
the calculated alloy curve is shifted to lower temperature. 

As mentioned in chapter 2 our method is very sensitive with respect to inaccuracies of 
the bandstructure results, which strongly influence the low-temperature regime. Tkis might 
explain the low-temperature peaks of the curves, which do not correspond to experiment. 

We would like to emphasize that the inconsistencies among the different curves (for 
example in figures 6, 8 and 9) are also observed in the corresponding B’(M) curves and can 
therefore be ascribed to numerical instabilities of the bandstructure method. This effect is 
most obvious for the P& calculations shown in figures 8 and 9, whose input data differ in 
the lattice parameter by only 0.03460. Apparently an accurate calculation of B’(M) means 
a critical test for the bandstructure method. 

Note also that changes in qo influence the scaling of the temperature axis via equation 
(2), but never alter the value of ,y((mZ)) calculated with formula (1). On the other hand 
the relation between (m2) and T is affected by the susceptibility for T = 0 (cf. equation 
(2)), which is a rather uncertain quantity, if it is calculated with our bandstructure program. 
Choosing an individual value for qo for each x(T) curve, we compensate for this influence 
of x (0) on the temperature axis to obtain the same decay for all curves at high temperatures. 
Crossings of different curves will then be avoided. 
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Figure 8. The susceptibility of Pd3lAg based on a non-nlativistic ASW calculation for the 
laltice p m t e r  14.88 au and the componding result for Pa, n = 7.44 a". qa = 
0.038 x k a - '  K-'P. 

. o J  . . . . . . . . . . . . . . . 
0 100 200 300 400 500 600 700 , 

T [ K I  
F i p  9. The susceptibility of W i i H  based on a non-relativistic ASW calculation for lattice 
parameter 14.816 au and the corresponding result for P a .  a = 7.438 au. qo = 0.04.0.038 x 
k a - 1  K - l f i .  

In the supercell calculations equation (1) was evaluated with 44 mesh points each of 
which required a self-consistent calculation for a final field stability of IO-' RydpB. 

In view of the enormous amount of computer t i e  and the limited accuracy of the 
supercell calculations we chose another method to simulate low hydrogen concentrations in 
Pd with the ASW program. We increased the valence electron concentration of the primitive 
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Flare 10. The susceptibility of PdH, based on non-relativistic ASW calculations for a lattice 
w e t e r  of 7.4 au. ?be low hydrogen concentration was simulated by additional valence 
charges (see the tea). 90 = 0.06xZno-' K-'I3. 

Pd cell by the impurity concentration thus taking into account the hydrogen electron, yet 
neglected the proton. In this way the conhibution of the hydrogen electron to the valence 
charge may have been overestimated, since low-lying hydrogen states, which are neglected 
in this model, will partially pick up the hydrogen electron [22]. The results of this model for 
H concentrations of 1.5 and 3%, as well as the curve for pure Pd, with a lanice parameter 
of 7.4 au are shown in figure 10. Apart from the fact that the susceptibility of even pure 
Pd is too low, the results are in agreement with experiment with regard to the existence 
of a maximum. It has to be kept in mind that this procedure overestimates the hydrogen 
concentration as mentioned above. 

4. KKR-CF'A Wdb 

We also performed calculations with the KKR-CPA technique [13], which can be applied 
to non-stoichiometric random alloys. The KK+CPA program supplied by Akai [14] was a 
scalar relativistic version for substitutional alloys. 

Figure 11 shows susceptibility curves of Pdl-,Ag, for 0 < x < 0.03 and the 
theoretical equilibrium lattice parameter of 7.42 au. In agreement with experiment we 
obtain a maximum for the pure Pd curve, which disappears at 2% Ag. The susceptibilities 
continously decrease with increasing Ag concentration, yet are always higher than the 
experimental ones. Apart from the high susceptibilities and the overestimated influence 
of the Ag impurity the general features of the calculated curves agree with experiment. 

Figure 12 shows the same calculations for the lattice parameter 7.35 au. The curves are 
similar to those in figure 11. the susceptibilities being in better agreement with experiment, 
but the maximum being less pronounced. 

Calculations on pure Pd using a non-relativistic potential did not show a maximum. The 
maximum might thus be of relativistic origin, yet calculations on Pd with a scalar relativistic 



2612 Kirchner et a1 

. o  '? 0 1 100 200 300 400 500 600 700 . 
T [ K I  

DO 

Figure 11. The susceptibility of Pdl-,Ag, bgsed on scalar relativistic KKR-CPA calculations for 
the lattice parameter 7.42 au and impurity Eoncentrations 0.0.5, I, 2 and 3%. The wrresponding 
values of qo are 0.04.0.042,0.042 and 0.043.0.043x2~ru-' K-'P. 

30 

Figure U. The susceptibility of Pdl-,Ag, based on scalnr rel2iivisvislic KKR-CPA calculations for 
a lattice parameter 7.35 au and impurity woeenhations 0,O.S. I ,  2 and 3%. The conesponding 
values of go are 0.05, 0.05, 0.052, 0.054 and 0 .056xkn- '  K-'f3, 

ASW version likewise did not produce a maximum. This situation is unsatisfactory of course, 
because it means that a clear statement about the importance of relativistic effects cannot 
be made so far. We t h i i  that the use of a more sophisticated bandstructure method will 
be helpful with regard to this question. 
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5. Comparhon with the Stoner theory 

In order to derive the formulas ( 1 x 3 )  for the temperature-dependent susceptibility we 
applied spin fluctuation theory, which is based upon collective mode excitations. Today 
spin fluctuations are considered to be of decisive importance for the temperature behaviour 
of itinerant systems [23]. On the other hand the thermal excitations of Stoner's theory 
[M, 251 are particle-hole excitations with a spin flip not including collective phenomena. 
In this chapter we compare the susceptibility obtained from formulas (1H3) with that 
calculated in terms of the Stoner theory. 

The formula for the inverse susceptibility of Stoner's theory is given by [26] 
r W 1-1 

N ( E )  is the density of states for both spins, Z the Stoner parameter and f (E) the Fermi 
distribution function 

Note that the chemical potential p is determined implicitly by 

N ( E ) ~ ( E ) ~ E  = ne 
-m 

(ne is the number of electrons per unit cell), and therefore depends on the temperature. 
In order to obtain the susceptibility for a given temperature the corresponding p was 

calculated from equation (6), and subsequently x-'(T) from equation (5). The integration 
off' in (5) with sufficient accuracy, in particular for low T, demands a very fine integration 
mesh around p. In figure 13 we have plotted the susceptibility curves for Pd. The density 
of states was calculated with the tetrahedron method of ASW using 5900 tetrahedrons in 
the irreducible wedge of the first Brillouin zone. The Stooer parameter Z was chosen for 
coincidence of the theoretical and experimental curves at T = 0. Again a maximum can be 
found, but, compared to the results of sections 3 and 4, the susceptibility curves extend to 
higher temperatures. 

To compare these results with spin fluctuation theory the electron interaction had to 
be taken into account in a similar manner as in the Stoner theory. B ( M )  was therefore 
calculated according to 

t . 1  

2 p B  2pB2 
€F -Ep  I M  

B ( M )  = - - - (7) 

in which the difference of the Fermi energies was obtained within the rigid-band model 
from a density of states for M = 0. Equation g) is the expression for the external field 
in the Stoner theory, where the electron interaction is contained completely in the second 
term. Again Z was adjusted to the experimental value at T = 0. The results for the same 
lattice parameters as in figure 13 are shown in figure 14. Similar to what is found for the 
curves presented in the previous two chapters, the maximum appears at about 80 K. As 
will be shown in the next section the different results of the spin fluctuation and Stoner 
theories are mainly due to a difierent influence of the electron interaction on the scaling of 
the temperature axis in the two theories. 
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Figure 13. The susceptibility of Pd (Stoner theory) based on ASW calculations for lanice 
parameters 7.333, 7.40 and 7.425 ay. The Stoner parameter was adjusted to the experimental 
value for T = 0. 
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Fwre 14. The susceptibility of Pd within the rigid-band model spin Ruciuntion theory 
(refer to the text), based on Asw calculations for lattice parameters 1.333. 7.40 and 1.425 au. 
q~ = 0.05 x k a K L  K-'P. The Stoner parameter was adjusted to the experimental value for 
T =O.  

6. Discussion 

As can be seen from equation (5), the parameter of the electron interaction I in Stoner 
theory causes a vertical shift of the inverse susceptibility, leaving the horizontal position of 
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the maximum in figure 13 unchanged. 
On the other hand, in spin fluctuation theory there is a natural dependence of x - l  on 

(m2) as demonstrated by equation (1). The relation between (m2) and T is determined by 
equation (2). which in turn involves the fluctuation-dependent inverse susceptibility. Since 
the electron interaction enters the susceptibility, it also affects the (m’) versus T curve, and 
thus the scaling of the susceptibility on the T axis. Thus the position of the maximum is 
affected by the strength of the eleceon interaction. For an estimate of this effect we neglect 
the wavevector dependence of x-’ and write the susceptibility as 

x p  is the Pauli susceptibility and S the enhancement factor. From equation (2) we then 
obtain 

This leads to a scaling of the temperature axis as 

(mZ)  T - -  
S 

for a constant cut-off wavevector qc, and as 

for qc = qoT1I3, as used for all plots in this paper. With a typical enhancement factor 
S = 9 for Pd metal equation (9) predicts the susceptibility maximum of spin fluctuation 
theory at a temperature one third of that from the Stoner theory. This is in good agreement 
with figures 13 and 14. 

A microscopic foundation for equation (8) can easily be given. Io a recent paper 
1191 we showed that the excitation energies of the Stoner and spin fluctuation theories are 
comparable for non-interacting systems, leading to the same shape of the susceptibility 
curves. In the same paper an explicit formula for the partition function of an interacting 
system was derived, 

where the quadratic term of the energy function,al X[m] was given by 

With a constant cut-off wavevector qc in equations (IO) and (1 1) the enhancement factor S 
of x(q) causes the curves to shrink on the temperature axis in agreement with equation (8). 

Since the maximum of the Pd curves appears in both theories we suppose that its origin 
lies in the bandstructure. To investigate this point in greater detail we drew bandstructure 
plots from ASW calculations on Pd for a series of magnetizations. The bandstructure for 
M = 0 is shown in figure 15. Since the minority-spin bands are shifted to higher energies 
with increasing magnetization, the spin-down bands located approximately 3 d y d  below 
EF near the L point of the Brillouin zone and the Fermi level approach each other and 
converge at M M 0.lfis. This effect leads to a slight increase of the density of states at the 
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Figure 15. The bandslmcture of Pd from an ASW calculation Tor lhe lattice parameter 1.425 an 
and zero magnetization, 

Fermi energy of the spin-down band. Within the rigid band model the inverse susceptibility 
as a function of M is obtained by differentiation of equation (7), which gives 

Thus the maximum in the density of states at M % 0 . 1 ~ ~  causes a minimum in the x - ’ ( M )  
curve, and thus a minimum of x - ’ ( T )  by virtue of equation (I). 

In this context it should be mentioned that in both models, the Stoner theory as well as 
rigid-band-based spin fluctuation theory, the Stoner parameter Z shifts the x-]fT) curve to 
lower values as can be seen from equation (5) and equations (7) and (1). By this mechanism 
the electron interaction magnifies all structures present in the non-interacting susceptibility 
x p ( T )  and thus enhances the maximum by a factor of S. In other words the maximum of 
the curves in figures 13 and 14 is hardly observable for Z = 0. 

The susceptibility curves from the calculations presented in sections 3 and 4 are less 
easy to understand, because the electron interaction is not treated with a single parameter, 
but with a self-consistently determined potential. Nevertheless, we suppose that the same 
mechanism holds as pointed out above; that is, the maximum is due to bands approaching 
the Fermi surface near the L point and is enhanced by a factor of S through interaction 
effects. 

7. summary 

We applied our recently presented method to the calculation of the temperature-dependent 
magnetic susceptibility of Pd and the alloys Pdl-,Ag, and PdH, obtaining the input data 
from ASW and KKR-CPA bandstructure calculations. The non-relativistic ASW calculations 
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and the scalar relativistic KKR-CPA calculations for Pd yield a maximum of x ( T )  near the 
experimental value of 80 K. The ASW curves lie below, the KKR-CPA curves above the 
experimental ones. 

In order to simulate the alloys for x = 0.03 the ASW program was applied to the 
supercells Pd3,Ag and PdSZH. The supercell results yield susceptibility values too high 
compared with experiment. However, in relation to the corresponding PQ calculations, 
where the same k-vectors for the Brillouin zone integration were used, they reflect the 
experimental trend. 

As an alternative to the ASW supercell calculations we simulated low hydrogen 
concentrations in PdH, by calculations for pure Pd with increased valence electron 
concentration. The susceptibility turns out to be too low, yet the general features of the 
curves agree with experiment. 

The decay of the susceptibility maximum of the Pdl-,Ag, alloys with increasing Ag 
concentration could be reproduced satisfactorily with KKR<PA calculations. 

A detailed comparison of x ( T )  of Pd from the Stoner theory and from spin fluctuation 
theory with rigid bands indicated that the temperature axis is scaled by the factor S-’” in 
spin fluctuation theory. Furthermore, the maximum of x ( T )  of Pd could be explained by 
the shape of the bandstructure at the L point of the Brillouin zone and its modification with 
finite magnetization. 
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